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Turbulent airflow over water waves - 
a numerical study 

By M. A. AL-ZANAIDIt AND W. H. H U I  
Department of Applied Mathematics, University of Waterloo, Ontario, Canada 
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Turbulent airflow over a Stokes water-wave train of small amplitude is studied 
numerically based on the two-equation closure model of Saffman & Wilcox (1974) 
together with appropriate boundary conditions on the wave surface. The model 
calculates, instead of assuming, the viscous sublayer flow, and i t  is found that the 
energy transfer between wind and waves depends significantly on the flow being 
hydraulically rough, transitional or smooth. Systematic computations have yielded 
a simple approximate formula for the fractional rate of growth per radian 

with Si = 0.04 for transitional or smooth flow and Si = 0.06 for rough flow, where p 
is density of air, pw that of water, U, wind speed a t  one wavelength height and c 
the wave phase velocity. This formula is in good agreement with most existing data 
from field experiments and from wave-tank experiments. I n  the case of waves 
travelling against wind, the corresponding values are Si = -0.024 for transitional and 
smooth flow, and Si = -0.04 for rough flow. 

1. Introduction 
The question of how wind blowing over the surface of water generates waves 

remains a central problem in wind-wave research, despite the large amount of 
theoretical and experimental work during the last decades. 

Ingenious methods have been devised to measure the growth rates due to the direct 
input of energy from wind to waves in wave tanks by Shemdin & Hsu (1967), Larson 
& Wright (1975), Wu, Hsu & Street (1977,1979) and Kawai (1979), and on the ocean 
by Dobson (1971), Elliott (1972), Snyder (1974), and Snyder et al. (1981). These 
results, despite large scattering, have been shown recently by Plant (1982) to be well 
described by a simple empirical formula for the fractional rate of energy input by 
wind per radian 5: 

Cf-= (0.04rf0.02) -3 , 

where u* is the friction velocity of the wind, u and c are the frequency and phase 
velocity of the waves travelling in the same direction as the wind, and P is defined 
in (40a). 

On the theoretical side, whilst Phillips’ (1957) resonant theory of wave generation 
by wind describes the initial stage of generation when the wave amplitude is 
extremely small and the growth is linear in time, i t  is well documented that, in the 

t Present address : Department of Mathematics, university of Kuwait. 

P (: Y (1)  
U 



226 M .  A. Al-Zanaidi and W .  H .  Hui 

more important stage of generation, the wave grows exponentially in time. Miles’ 
(1957, 1959) inviscid theory does predict an exponential growth, but it tends to 
underestimate the growth rate by a factor of 2 to 3 when compared with measurements. 
It is well recognized that in Miles’ inviscid theory the air-flow turbulence, which is 
necessarily present in the field, is largely neglected, except in its role in setting up 
the logarithmic shear flow. This neglect of turbulent effects in the theory has been 
ascribed (Miles 1967) to  be the main reason for the large differences between theory 
and experiments, and attempts were made by Davis (1969, 1970, 1972, 1974) among 
others to extend Miles’ theory to include these effects numerically. It was found that 
the energy-transfer rate so calculated depended sensitively on the closure model 
employed and on the details of the velocity profile assumed in the viscous sublayer 
near the surface. Riley, Donelan & Hui’s (1982) extension of Miles’ theory to include 
the effect of interaction of waves with turbulence based on Prandtl’s mixing-length 
hypothesis improves the growth rate only slightly. 

Numerical calculations of the rate of energy input from the turbulent airflow to 
water waves were made by Townsend (1972), Gent & Taylor (1976) and Gent (1977). 
These studies assumed a rough flow and used a one-equation closure model. Whilst 
the rough-flow assumption is quite valid in many wave-tank experiments, it is also 
known that turbulent airflow over water waves on the ocean (Snyder et al. 1981) 
and in some laboratory situations (HSU et al. 1982) is typically transitional and not 
rough. On the closure model, experience (Launder & Spalding 1972) has shown that 
one-equation closure models are only marginally more accurate than Prandtl’s 
mixing-length hypotheses, and that two-equation closure models are more accurate. 
Furthermore, a recent survey by Marvin (1983) concluded that modelling through 
eddy-viscosity concepts will probably be sufficient for most two-dimensional attached 
flow over solid boundaries. It was therefore decided to use a two-equation closure 
model to compute the turbulent flow over a Stokes wavetrain of small amplitude for 
which the airflow over the waves is attached. 

There are several versions of the two-equation closure model (for a survey see e.g. 
Marvin 1983; Launder & Spalding 1972), which are all similar in that they all assume 
the turbulence to be characterized by two densities which obey two diffusion 
equations. They otherwise all differ in details. The version of the two-equation closure 
model due to  Saffman & Wilcox (1974) is chosen here mainly because i t  is also capable 
of calculating the viscous-sublayer flow near the wave surface, in addition to its being 
well tested against experiments of flow over solid surfaces in many known cases. 

The governing equations and boundary conditions based on this model, and the 
numerical method for solving them are described in $2.  It turned out ($3) that  the 
growth rate under rough flow conditions is typically 50% higher than that under 
transitional flow conditions. Systematic calculations also lead t o  a simple formula (49) 
for the growth rate which is in good agreement with experiments. 

2. Mathematical formulation 
2.1. The model equations of SaJffman & Wilcox 

Consider an incompressible, statistically steady and fully developed turbulent airflow 
over deep-water gravity waves. Let the system of Cartesian coordinates (xl, x2) be 
such that the x2 axis is directed vertically upwards and measures from the mean water 
surface. The waves are periodic in xl, with wavelength h and of Stokes type, and 
propagate along the x1 direction with uniform effective surface roughness length yo. 
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As is standard, the velocity V (the local Eulerian velocity) is separated into a mean 
velocity U and a fluctuating part u as Vi = Ui + ui (i = 1,2) .  The pressure is separated 
similarly as p = Pi -p ' .  Substitution of these expressions into the continuity and 
momentum equations and averaging with respect to  time (denoted by an overbar) 
give the required equations for the mean turbulent flow. I n  a frame of reference 
moving with the wave phase velocity c, the mean flow is steady and the governing 
equations are 

continuity equation 
-- aui - 0; 
axi 

momentum equations 
au. ap a 

3 axj axi axj u . 2  = --+-[2(v+E)Sii]' i , j  = 1,2 ,  (3) 

where P = (l /p) P+$E. I n  (3) p and v are the density and kinematic viscosity of the 
air respectively, and E = &uuiui 

is the specific turbulent kinetic energy. 
I n  (3) the assumption of an eddy viscosity is used whereby the mean transfer of 

momentum by Reynolds stress is described by a scalar eddy viscosity e ;  that  is, the 
Reynolds-stress tensor is 

__ 
(4) 

- p = 2 p ~  Sij - $pE6ij, ( 5 )  

where 
1 aui au. 

a3 2 [ I  axj axi s..=- ---+A 

is the rate-of-strain tensor and 6, the Kronecker delta. Equation ( 5 )  represents the 
first hypothesis made in the model of Saffman & Wilcox (1974) as i t  is in any other 
two-equation closure model. The theoretical justification of the assumption of eddy 
viscosity is that the eddy-viscosity hypothesis is equivalent to  retaining the leading 
term in an expansion of the (unknown) functional relation between Reynolds stresses 
and the mean-velocity distribution (Saffman 1970). As noted earlier, the sufficiency 
of the eddy-viscosity model was well demonstrated by Marvin (1983) for attached 
two-dimensional flow over solid boundaries. 

The second common hypothesis made in the two-equation closure models is that 
the components of the turbulence responsible for the mixing and transfer of 
momentum are determined by an energy density E and pseudovorticity density w ,  
which satisfy nonlinear diffusion equations. I n  the version of Saffman & Wilcox these 
are 

turbulent-energy equation 

turbulent-pseudovorticity equation 

where b,, b,, . . ., b, are constants. The values of these six constants in the transport 
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equations are fixed with general arguments by Saffman (1970) and Saffman & Wilcox 
(1974). They are 

(9) 

b, = b6 = 0.5, b, = 0.3, b, = b,2, 

5 b  
- < 2 < 2 ,  
3 b2 

b 4b6 2 b = b  ---K 
' ( b :  b, )' 

where K (=  0.41) is the von KBrman constant and b, = 1.86, is used in this paper. 
This set of constants have been shown by Saffman & Wilcox to yield accurate 

calculation for the entire boundary-layer flow over a flat plate, including the 
prediction of the von KBrman constant in the law of the wall. 

The system of equations ( 2 ) ,  (3), (7 )  and (8) is closed by the relation 

e = E / w ,  (10) 

which is obtained from dimensional consideration of the local properties of the 
turbulence being determined by the energy density E and the pseudovorticity w .  

As shown by Saffman (1970), the transport equations (7)  and (S), which are similar 
to the set proposed by Kolmogorov (1942), incorporate the essential physical ideas 
that turbulence is convected by the mean flow, amplified by interaction with a 
mean-velocity gradient, diffused owing to the interaction of the turbulence with itself, 
and dissipated also owing to self-interaction. The model equations have been 
extended by Saffman & Wilcox (1974) to compressible turbulent flow, yielding the 
Van Driest compressible law of the wall. 

2.2.  Transformation to curvilinear coordinates 

We now use a system of orthogonal curvilinear coordinates ( 6 , ~ )  that is moving with 
the wave, in which the wave surface is a coordinate line 7 = 0, to overcome the 
difficulties arising from applying the surface boundary conditions. Therefore let 

i z1 = [-Re [ia exp {ik([+ iy)}], 

xp = 7 -Re [a exp {ik(6+ iq))], 

where a and k ( =  2 z / h )  are respectively the amplitude and the wavenumber of the 
wave. To second order in the wave slope ak ,  the coordinate 7 = 0 corresponds to the 
shape of the Stokes wave in deep water, that is 

x 2  = -a coskx,-+a2k sin2 kx,+O(a3k2). (12) 

The Jacobian of the transformation is 

In  what follows, all the velocities are scaled by the friction velocity u* and lengths 
by v/u*. The governing equations in 9 2.1 when transformed to (6, 7)-variables become 
as follows : 

(14) 
continuity equation a a 

- (J-iu) +- (J-iv) = 0, 
a7 

where u and v are the mean velocities in the 6- and 7-directions; 
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momentum equations 

energy equation 

pseudovorticity equation 

where 

2.3. Boundary conditions 

The boundary conditions of turbulent airflow over the water wave moving with phase 
velocity c can be divided into two groups : those on the surface of the wave and those 
far away from the wave surface. The outer conditions express the requirement that  
the flow disturbance due to the presence of the wave dies out for large values of the 
non-dimensional height. They are 

as q+m, I 1 
u = - In (1  + 7 )  +B, v = 0,  

K 

1 1 P = O  E = - ,  w = - -  
bl 4 7  

where B is the constant in the law of the wall, whose value depends upon the 
roughness of the surface. Experimental results have well confirmed the validity of 
the logarithmic distribution of mean wind velocity away from the wave. 

The second group of the boundary conditions are the inner conditions (on the wave 
surface). As mentioned before, Davis (1972) showed how sensitively the energy 
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transfer between wind and wave is dependent on the assumed form of wind velocity 
in the sublayer. It should be pointed out that  the wind velocity in the sublayer must 
be determined from the interactions of airflow and wave motion and cannot be 
assumed a priori. Moreover, the effect of the viscous sublayer was shown by Stewart 
(1970) to be important near the water surface. It is thus essential to impose correct 
boundary conditions a t  the wave surface in order to calculate the viscous sublayer. 
The boundary conditions that will be imposed on the wave surface are 

u=-cJ-*,  v = O ,  E = O  ( ~ = 0 ) ,  (21 a, b, c) 

and a boundary condition on w to be discussed later. Equation (21 a )  expresses that 
the mean tangential velocity equals the velocity of the wave plus the orbital velocity 
of the water particle.? 

The condition for the pseudovorticity a t  a solid surface was proposed by Saffman 
& Wilcox (1974) in terms of a universal function of roughness for the case of a flat 
plate 

where yo is the roughness length and Q ( u * y o / v )  is a universal function of the 
roughness parameter u* yo/v. The surface pseudovorticity condition (22) of Saffman 
& Wilcox (1974) for a flat surface needs to  be modified to include the effect of a wavy 
surface. The presence of the wave must cause variation of w along the surface. To 
find this variation, we take the pseudovorticity to behave like vorticity (i.e. 
o - curl V ) .  Since the vorticity curl V changes under the transformation to the 
orthogonal coordinates (g, 17) by a factor i t  is thus proposed that the boundary 
condition (22) be modified to  

It can also be shown qualitatively that this effect of variation of w is equivalent to 
the variation of surface roughness length yo. Thus, if we write 

Yo = YO++kY,, 

where yo is the average value of yo, and y1 represents the first-order (in a k )  correction 
to the roughness length yo, then y1 is positive a t  the crest and negative a t  the trough. 
Substitution of the last equation into condition (23) and using Taylor’s expansion, 
we obtain 

Since Q’ is negative, as can be seen from (24), the pseudovorticity is larger a t  the 
trough and smaller at the crest. This behaviour is qualitatively the same as that of 
condition (23). 

Three different degrees of roughness can be distinguished as follows. 
(i) Hydraulically smooth (0 < u * y o / v  < 0.12; a typical value of Q is 100). The 

(ii) Transitional roughness (0.12 < u * y o / v  Q 2.42; a typical value of Q is 6.3). The 
roughness grains are entirely embedded in the sublayer. 

constant of integration B in (20) begins to  decrease with the increase of u* yo/”. 

The Stokes drift, being of higher order, is not included in the tangential-velocity condition on 
the water surface. The surface wind-drift velocity, whose effects on the air flow are found by 
numerical experiments to  be negligible (Al-Zanaidi 1982), is also ignored in (21). 
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(iii) Completely rough (u,y,/v > 2.42; a typical value of Q is 0.1). The size of the 
roughness elements is such that the Reynolds number of the flow in their vicinity 
is large, so that the viscosity of the fluid has comparatively little influence on the 
whole motion. 

The universal function Q can be expressed in terms of the roughness parameter 
as follows: 

-2  

6.26 [In (y) + 2.381 

1.44 [In r*) + O.68]-’ (rough). 

(smooth and transitional), 
(24) Q(?) x 

These relations were obtained from experimental data by Saffman & Wilcox (1974) 
and will be used in (23). 

To sum up, the problem of calculating the turbulent airflow over a Stokes 
wavetrain is to solve (14)-(19) subject to boundary conditions (20), (21) and (23). 

3. Linear theory and numerical calculations 
3.1. Linear theory 

We now assume that the amplitude of the Stokes wavetrain is small, so that ak << 1. 
With terms O((ak)2) neglected, we may write 

where K = v k / u ,  is the non-dimensional wavenumber, and J,(r)  = - 2 e-Kq, as may 
be obtained by expanding (13) for small ak. I n  (25), U,, E,  and wo represent the 
turbulent airflow over the undisturbed water surface moving a t  uniform velocity c.  
The terms of order a k  represent the first-order correction to the mean flow due to 
the presence of the water wave. 

Substitution of the expansions (25) into the governing equations of motion 
(14)-(19) and the boundary conditions (20), (21) and (23) yield two systems of 
ordinary differential equations in 7 and their boundary conditions. The first system 
corresponds to turbulent air flow over an undisturbed water surface and is given by 
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and the corresponding boundary conditions are 

as r,+oo> 

1 
Uo = - ln( l+q)+B-C,  

1 1 

K 

E =-, w o = -  
O bl 4 7 

where C = c/u*, and 
Eo=O, u 0 = Q  r:”) - 6, (7 = 0). 

The constant B in (29) depends on the roughness of the wave surface. The above 
system of equations and boundary conditions (26)-(30) form a well-posed boundary- 
value problem of the fifth order. 

The second system of equations, obtained by equating like terms in ak, is as follows : 

a Vl 
a7 

continuity equation 
-+iKU, = $KU0 J , ;  

momentum equations 

energy equation 

pseudovorticity equation 
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The corresponding boundary conditions are 

and 

(36) 

(37) 

These two systems are to  be solved successively. The input data are the friction 
velocity u*, the roughness length yo and the wavelength A,  or any equivalent system 
of three independent dimensional or non-dimensional quantities. 

3.2. Numerical methods 

The boundary-value problem (26)-(30) of turbulent airflow over an undisturbed 
water surface was solved numerically using a time-marching technique. Accordingly, 
in the numerical solution of these equations, the time derivatives are reintroduced 
in the energy and pseudovorticity equations. The normal distance r,~ from the wave 
surface is stretched according to  

z = l n ( l + q ) .  (38) 

The new vertical distance z is then divided into N equal steps, and at each node the 
spatial derivatives are replaced by central-difference approximations, while a forward- 
difference approximation is used for the time derivatives. Equations (27) and (28) 
are thus reduced to  two algebraic equations with E, and wg unknown a t  the advance 
time level on one side of the equations and the rest of all known variables from the 
previous time level on other sides. The iteration procedure of the solution starts by 
guessing the initial values of E, and wo in such a way that they satisfy the boundary 
conditions (29) and (30), and new values of E,  and w, are then obtained. These new 
values are then used again as initial values for the next iteration over time. At each 
time step (26) is integrated to yield the velocity profile U,. These computational cycles 
are repeated until a steady state is judged to  have been achieved in which changes 
in U,, E, and w, are less than 0.5% over the last thousand cycles. For most cases, 
we found that N = 41 gives satisfactory results, and about 3000-5000 cycles are 
needed to reach a steady state. 

The numerical results of the calculated velocity profiles for several values of 
surface-roughness parameter u* yo/” are shown in figure 1, which is almost identical 
with the results of Saffman & Wilcox using a different numerical method. The profile 
shows how the mean velocity U, behaves inside the viscous-sublayer region and how 
it  merges into the logarithmatic velocity distribution outside the sublayer. The 
velocity profile for u* yo/v = 0.12 is in good agreement with the experimental data 
of Nikuradse and Reichart (see Schlichting 1961) for smooth wall. The results of 
calculations of turbulent flow over the undisturbed water surface (which will be called 
the reference flow) will be used to calculate the linear perturbed flow. 

The linearized perturbation equations (31)-( 35) and the corresponding boundary 
conditions (36) and (37) are solved numerically using a finite-difference method. The 
transformation (38) is again used and, also, the interval of the integration in z is 
divided into N equal parts. To solve the two-point boundary-value problem by the 
method of finite differences, all derivatives appearing in the equations are replaced 
by central-difference approximations for greater accuracy, except that  a forward 
second-order scheme is used for the pressure derivative near the surface boundary. 
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FIGURE 1. Velocity profile U ,  (scaled by u*) over still water: 0 ,  smooth flow (u* yo/v = 0.12); A, 
transitional flow (u* yo/v = 0.28); ., rough flow (u* yo/v  = 8); x , experimental data of Nikaradse 
and Reichardt for smooth flow. 

After algebraic manipulations, the linear ordinary differential equations (31)-(35) are 
reduced to a system of algebraic equations of the form (for details see Al-Zanaidi 1982) 

A Y = R  (39) 

where A,  Y and R are the complex coefficient matrix, the unknown complex vector, 
and the known complex vector respectively. The linear system AY = R has been 
solved using the subroutine LEQTIC, which uses the triangular decomposition (i.e. 
A = A, A,, where A,, A, are lower and upper triangular matrices respectively) of 
a rowwise permutation of the matrix A. 

The accuracy attainable with a finite-difference method clearly depends upon the 
order of the finite-difference approximation and upon the fineness of the mesh. I n  
the present numerical model a second-order finite-difference approximation is used 
for every derivative appearing in the system of ordinary differential equations to 
obtain higher accuracy. As to the number of mesh points, since the results of a 
numerical experiment show that the difference in the values of the energy inputs to 
the wave for N = 40 and N = 50 is of the order of 1 yo, it was decided to use N = 40 
for all computations, for which the rank of the matrix is 200. 

4. Numerical results and comparisons with experiments and other 
calculations 

4.1. Introduction 
Although i t  is well known that both surface-pressure and shear-stress variation along 
the waves influence the rate of energy transfer between the air flow and the waves, 
the contribution due to shear-stress variation has been found in our calculation to 
account for less than 1 yo of the total (Al-Zanaidi 1982) and will thus be neglected. 
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The wave-perturbation pressure p is proportional to the wave slope a k  and may be 
written in one of the following forms : 

p = a k ( ~ + i ~ ) p w c " c x p ( i k x )  

or p = ak(6,+iai) p (U, -~)~exp( ikx) ,  (40 b ) 

where p and pw are the densities of air and of water. The various growth rates <, Si 
and /3 are related by 

5 = P = ai L(?- IJ (41) 
0- Pw 

and U, is the wind speed at the height of one wavelength, which is calculated from 
(43) below. 

As already mentioned in $3.1, there are three independent parameters that define 
a flow situation. These may be the set of dimensional variables consisting of the 
wavelength A = 2n/k, the roughness length yo and the friction velocity u*. Alterna- 
tively they may be the set of non-dimensional parameters 

where the first parameter represents the strength of the wind velocity, the second 
is related to  the wavelength, and the third is the non-dimensional surface rough- 
ness length (the roughness Reynolds number). For all the calculations we used 
v = 0.15 cmz/s and g = 981 cm/s2. 

4.2. Vertical structure of the wind field 

The turbulent closure model used here automatically produces a logarithmic mean 
wind structure away from the wave surface, i.e. 

u* Y U = - In - 
K Yo 

(y % yo). (43) 

I n  figure 2 ( a )  is plotted the in-phase component 8, in (42b) versus the normal 
distance 7 measured from the wave surface, i.e. 

7 = y-ue-"Ycoskx. (44 1 

Included are also the results of the potential-flow theory and the field measurements 
of Snyder et al. (1981). The present calculations show that the perturbation pressure 
decays exponentially away from the wave surface. The calculated rate of decay is 
also found to be in close agreement with the measurements of Snyder et al., in which 
the flow was transitional. It is noted that potential-flow theory tends to overestimate 
the rate of decay. 

Calculations for the decay of the out-of-phase component ai away from the wave 
surface give similar results. On the other hand, figure 2 ( b )  shows that the phase shift 
angle q5 = tan-l( -,!?/a) = tan-' ( -&Jar) is almost unchanged as the height increases. 
All these are in agreement with an important finding of Snyder et al. that the wave 
perturbation pressure decays exponentially in the normal distance from the wave 
surface without change of phase. 
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FIGURE 2. ( a )  Vertical structure of the in-phase component of pressure field. Case ( i ) :  0, smooth 
flow (U , / c  = 3.0, c/(gv)? = 31.4, u* yo/v = 0.12); 0 ,  potential theory. Case (ii): +, transitional flow 
( U , / c  = 3.0, c / (gv)b  = 40.2, u* yo/v = 0.25); A, potential theory; A, Snyder et al. (1981). Case (iii): 
0, rough flow (Ci,/c = 3.0, c / ( g v ) i  = 127.5, u, y,/v = 8 ) ;  a, potential theory. (6) Vertical structure 
of phase shift 9 from wave trough for the case U,/c  = 3.0, c / ( g v ) i  = 40.2, u* yo/v = 0.25: X ,  

present; +, Snyder et al. (1981). 



Turbulent airjiow over water waves 237 

2oo > 
- 20" 

c 

-40" 

- 60" 

- 80" 
0 4 8 12 16 20 

V*lc 

FIGURE 3. The phase shift of the surface pressure from the wave trough for Miles' (1959) parameter 
B = K2gyo/u: = 6.18 x A, transitional flow (u*y,,/v = 0.223); +,  runs 15-20; X , runs 14-20 
of the field measurement,s of Snyder et al. (1981). 

4.3. The phase-shift angle q5 of surface pressure 

Observations of the wind-wave generation process a t  sea (Dobson 1971 ; Elliott 1972; 
Snyder 1974; Snyder et al. 1981) all have one aim in common, namely to  determine 
the phase shift from the wave trough in the pressure signal. I n  order to compare the 
results of Snyder et al. with our model, the parameters for their measurement have 
been established from their table 11. The average wind speed a t  5 m and the average 
friction velocit,y for runs 15-20 are 643.7 cm/s and 20.4 cm/s respectively. The 
magnitude of the surface-roughness parameter (u* yo/v = 0.223) shows that the flow 
is transitional in the field. The computations of the phase shift of the pressure signal 
as a function of U J c  are shown in figure 3 along with runs 15-20 and runs 14-20 
of Snyder et al. The present calculations are in good agreement with their results. 
Their maximum phase shift of the surface pressure is SO", and i t  occurs a t  U,/c w 1.3. 
Our calculated maximum shift is 10% larger and the shape of the curve is sharper 
than that of Snyder et al. The pressure phase is almost constant (z  8") for U,/c 
between 3 and 8, which corresponds to short waves. The position of the phase peak 
lies in the range 1 . 0  < uA/c < 2.0; that is, when the waves travel with a phase 
velocity comparable to  the wind velocity. There is also another peak a t  UA/c % 1.0 
where the pressure phase shift changes sign as the wave moves with phase velocity 
comparable to or faster than the wind speed. This implies energy transfer from wave 
to  the mean airflow. as expected. 

However, present calculations of the fractional rate of energy input per radian from 
wind for transitional flow are about two-thirds as large as the lowest of the curves 
of Snyder et aE., particularly near the spectral peak for which U,/c z 1.6 (Al-Zanaidi 
1982). The difference of the pressure amplitude between the present calculation and 
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CP 
ak 

c l  UA 

FIGURE 4. Wave perturbation-pressure coefficient. The various measurements of Kendall (1970) 
fall within the shaded area. Present calculations for Miles’ parameter l2 = K2qya/t& = 3 x are: 
+, smooth flow (u,y,/v = 0.15); A, rough flow (u,y,/v = 8.0). 

the field measurement of Snyder et al. may be due to the nature of the waves in the 
ocean, in that they are moving in a group, consisting of both larger and smaller waves, 
whereas in our mathematical model they are Stokes waves of infinite train. 

4.4. The pressure coeBcient 

As shown in figure 4, comparisons with the data of Kendall (1970) indicate that the 
present model predicts the magnitude of the wave-perturbation pressure coefficient 

with reasonable accuracy. The effects of surface roughness is clearly demonstrated, 
especially for small absolute values of c /  U,, where the pressure coefficient C, due to 
rough flow ( u , y , / v  = 8) is large compared with its values for smooth flow 
(u*yo /v  = 0.15). This shows the sensitivity of the surface-roughness conditions and 
the indirect effect of viscous sublayer (in the case of smooth flow) on the pressure 
coefficient. 

4.5. Comparisons with other calculations 

I n  comparing our results with Conte & Miles’ (1959) calculations, we shall consider 
smooth, transitional and rough flows. Numerical results in terms of Miles’ wave- 
growth parameter & (equal to / used in Miles) are plotted in figure 5 for 
52 = K2gyo/u: = 3 x 10-3alongwithConte & Miles’ calculations. Thegrowth parameter 
pill is related to  Si by the following relation : 

pM = K2(  u, - C ) 2  Si. (47) 

In the figure, the present pM and Conte & Miles’ / are seen to  be close for transitional 
and rough flow conditions in the range c / u *  = 8-12. This supports Phillips’ (1977, 
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FIGURE 5. The out-of-phase component pol of surface pressure for a = K2gyo/u i  = 3 x lo-: A, 
smooth flow (u,y,/u = 0.15); 0,  transitional flow ( u * y o / u  = 0.25); X ,  rough flow (u,yo/u = 8); 
., Conte & Miles (1959). 

3 4.3) argument that Miles’ formula is expected to become important in a narrow range 
of c/u* x 10. For c/u* < 8 and c/u* > 14, however, the calculated results are larger 
compared with Conte & Miles’ values. The following explanations for the difference 
are given. First, Miles’ critical layer (where the wave and wind speed are matched) 
is moving closer to the wave surface as c/u* decreases; that is, it lies closer to or within 
the viscous-sublayer region. In this region, the viscous effect is expected to dominate 
the flow. But Miles’ model is inviscid, so his prediction of /& may be inaccurate for 
small values of c/u*.  Secondly, for large c/u,, the energy input to the wave in Miles’ 
model depends on the existence and the height of the critical layer. The magnitude 
of Miles’ /lM for large c/u* may be underestimated owing to the large height of the 
critical layer. Thirdly, the interaction of turbulent air flow with waves is included 
in the present model but neglected in Miles’. 

On the other hand, the calculated in-phase components of silrface pressure are in 
good agreement with Conte & Miles’ calculations (see Al-Zanaidi 1982). 

Comparisons of the present calculations with that of Townsend (1972), and Gent 
& Taylor (1976) for waves travelling in the wind direction show order-of-magnitude 
agreement for the rate of energy input to the waves (Al-Zanaidi 1982), with the 
present calculations predicting a rate that is consistently up to 50 yo higher. It should 
be noted that their models assumed the flow to be hydraulically rough to avoid the 
difficulties arising from the viscous sublayer, while field data of Snyder et al. 
(1981) indicate that typical airflow over ocean waves is transitional. 

Under adverse wind conditions, on the other hand, the airflow over waves is more 
likely to be hydraulically rough. Gent (1977) has calculated the rate of attenuation 
of waves travelling against wind, assuming a rough flow condition. His results are 
compared with ours (for the case of rough flow) in table 1 for various values of the 
parameter 

R = -In (Icy,) (48) 

and c/u*. Good agreements of the two calculations are seen for both the pressure 
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Gent (1977) Present model 
C 

-Re(S)  --Irn(g) 4 - R e ( g )  - I m ( g )  4 
- 

R u* 
6.0 -3.0 24.44 2.890 6.74" 36.47 3.500 5.48O 
7.0 -5.0 15.00 1.200 4.57O 16.14 1.390 4.92" 
8.0 -8.0 9.53 0.563 3.38" 9.60 0.585 3.49" 
9.0 -14.0 5.64 0.224 2.28" 5.37 0.220 2.34" 

10.0 -22.0 3.95 0.112 1.62' 4.23 0.107 1.45" 

TABLE 1 .  Comparison of surface-pressure components and phase shift for various values of R 
and c / u * .  The waves are travelling against the wind. 

components and the phase-shift angle. Both calculations also show a rate of 
attenuation that is of the same order of magnitude as in the generation case. The 
attentuation rate is typically 102-103 times larger than the viscous damping. 

4.6. Typical results for a given wavetrain 

I n  figure 6 ( a ) ,  the fractional rate of energy transfer per radian is plotted as a function 
of the ratio ( U , / c )  of wind speed a t  one wavelength height over the wave phase 
velocity for a wavetrain with wavelength h = 10 m and various flow conditions. I n  
the figure the positive values of U,/c correspond to  the wavetrain travelling with the 
wind, and the negative values of U,/c  < 0 correspond to the wavetrain travelling 
against the wind. It is clear that  the predicted rate of energy transfer is from the wind 
to  the wave when the wave is travelling with the wind, except when the wave is 
travelling at a velocity slightly faster than the wind ( 1  < U,/c  < 1 . 1 ) ;  in the latter 
case the energy transfer is predicted to be from the wave to the wind. On the other 
hand, the energy transfer is predicted to be from the wave to  the wind when the wave 
is travelling against the wind, as would be expected intuitively. I n  figure 6 ( a ) ,  the 
rate of attenuation of a wave opposing the wind is seen to be comparable to  the rate 
of energy input to  the wave moving with the wind for all surface-roughness 
conditions. Moreover, both the rate of energy input (generation) and the rate of 
attenuation are increased as the surface roughness increases, especially for large 
absolute values of UJc .  

For wavetrains of different wavelengths the rates of energy transfer to  and from 
the waves show similar behaviour to that of figure 6 (a) .  It is observed that the curves 
of figure 6 ( a )  have approximately a parabolic form. Indeed, when they are plotted 
as a function of (U, /c  - l)z, we obtain approximate linear relations (figure 6 b )  between 
the energy transfer (p , /p)  6 and ( U , / c -  1)2. These will be discussed further in $5. 

The corresponding surface-pressure phase shift 4 from the wave trough for 
conditions of figure 6 is shown in figure 7 as a function of U,/c .  As shown in figure 7 ,  
the phase shift is positive and small for a wave travelling against the wind, but 
is negative and can be large for a wave travelling with the wind. Also, the phase 
shift has an absolute maximum value of about 80" which occurs within the range 
1 < U,/c < 2 .  Both present prediction of the surface pressure phase shift and 
Snyder's (1974)  observation show that the phase shift changes sign when the waves 
are travelling a t  speeds comparable to those of the wind. Furthermore, the effect of 
the surface-roughness conditions on the phase shift for waves travelling with the wind 
is larger compared with that for waves travelling against the wind. 
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FIGURE 6. (a )  Fractional rate of energy transfer per radian (p, /p) 5 versus U,/c  for a 10 m wave. 
(6) (p , /p)5  versus ( U , / c - l ) * .  0 ,  smooth flow (u,y,/v = 0.12); A, transitional flow 
(u* yo/v = 0.25); ., rough flow (u* yo/v = 8.0). 
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FIGURE 7. The phase shift of the surface pressure from the wave trough for 

a 10 m wave ( c / ( g v ) i  = 74.8). For legend see figure 6. 

5.  Concluding remarks 
In  the present model of turbulent airflow over a train of Stokes waves of small 

amplitude, there are three independent parameters defining a flow situation. 
Systematic computations for the combinations of the three parameters over wide 
ranges were done to determine how the rate of energy transfer between wind and wave 
varies with each of the parameters. From these computations it emerged, as noted 
in $4.6 (figure 66),  that  the fractional rate of energy transfer per radian is 
approximately proportional to  ( U J c  - 1)2 for a given wavetrain. This implies that  
Si in (40b) depends only on two independent parameters: the wavelength h (or 
equivalently c / ( g v ) i )  and the roughness parameter ?A* y o / v .  Thisout-of-phase coefficient 
Si is plotted as a function of wavelength h in figure 8 for the case of favourable wind 
and in figure 9 for the case of adverse wind. It is seen that Si, and hence the rate of 
energy transfer, depends critically on the flow being hydraulically transitional or 
rough. On the other hand, it varies rather gently with wavelength. 

For the generation case, i.e. when U,/c > 1, Si takes approximately the value of 
0.04 if the flow is transitional or smooth. For rough flow, on the other hand, Si 
increases with wavelength from 0.05 to 0.07. Thus we have the following approximate 
formula for the fractional rate of energy input by wind per radian : 

with 

2 5 = - - s , - (  P -  P u, - l ) ,  
0- Pw 

[ 0.04 (for smooth or transitional flow), 

si ='(0.06&0.01 (for rough flow). 
(49 b 1 
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FIGURE 8. The out-of-phase coefficient Si for waves travelling with the 
wind U,/c  > 1.  For legend see figure 6. 
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FIGURE 9. The out-of-phase coefficient 6i for waves travelling against 
wind U, /c  < 0. For legend see figure 6. 
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Equation (49a) with values of Si given by (49b)  is plotted in figure 10 in comparison 
with most existing experimental data as compiled by Plant (1982). I n  this figure we 
use p/p, = 0.0125, U, = 25u, and ai = 0.06 for rough flow. As noted in $1, ocean 
wind waves (e.g. Snyder et al. 1981) correspond to transitional flow, and should be 
compared with Si = 0.04. The agreement of our calculations with experimental data 
is seen to be good for a wide range of u * / c  from ocean waves to laboratory waves. 
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For large U A / c ,  (49) reduce t o  

0.031 (?y (for smooth or transitional flow), (50a) 

(50b)  

c = - =  
U * I  0.047 (:)’ (for rough flow), 

which is in excellent agreement with Plant’s empirical formula (1) .  The latter, 
however, does not distinguish transitional or smooth flow from rough Aow. 

Formula (49a) with Si = 0.04 is also in excellent agreement with Stewart’s (1974) 
formula 

especially if the wind velocity at 5 m height, U,, is large compared with the phase 
velocity c .  
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More recently, wave-tank experiments by Mitsuyasu & Honda (1982) yielded the 
result 

Since the flow in their experiment was rough, and the values of U,/c were large, their 
results should be compared with our (506). The agreement is again seen to be good. 

In  the case of wind blowing against waves, we have, from figure 9, 

[ -0.024 

\,-0.040 (for rough flow). 

(for smooth or transitional flow), 
6. = (53) 

It should be pointed out that, in the case of wind blowing against waves, the flow 
is most probably rough, and the value of Si = -0.04 shold be used accordingly. 
Preliminary data from the experiments conducted by Dr M. A. Donelan at the 
Canada Centre for Inland Waters wind-wave flume using a wave follower indicates 
the constancy of Si for the cases of wind blowing against waves. Further detailed 
comparisons between present calculation and experiments will be made in the near 
future. 

In conclusion, our systematic numerical calculations have been shown to  be in good 
agreement with most existing experimental data covering a wide range of conditions 
for waves on the ocean and those in wave tanks. 

If, as is likely, the flow is transitional under favourable wind conditions and rough 
under adverse wind conditions, then the growth rate for U,/c > 1 and the attenuation 
rate for UJc  < 0 are given simply by (49a) with 

We are indebted to Dr M. A. Donelan for many valuable discussions during the 
course of research. Thanks are also due to Dr P. A. Taylor for his comments on the 
work. This work was supported by the Nattural Sciences and Engineering Research 
Council of Canada. 
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